ProgrammeCourse OutcomeProgramme / CourseProgramme / Course OutcomeThe outcome of the Programme offered by the Department of Mathematics, Ramanada College, Bishnupur, are • To deal with the sylabaus in a very scientific, lucid and comprehensive way, sod that it students.This programme uses a combination of usual tasstored to the sylabaus is understandable to all the students.This programme ises a combination of usual casses, project work to achieve the required to develop more skilled or specialized in a particular discipline.The outcomeThe outcome the sylabaus is understandable to all the students.The outcome the sylabaus to develop more skilled or specialized in a particular discipline.NBHM etc. After to develop more skilled or specialized in a particular discipline.The outcome to develop the depth ergineering and mathematics and allow students to develop the depth ergineering and communications.Mathematics and in allow students or to fuel the realific. • Create awareness to become an enlightened eitizen with chomyclege in and many other occis responsibilities within the scope of bestowed rights and privileges.PC: Semester IMath-101C: Abstract AlgebraAfter completion of this courses a student will learn • As ited of characterization of groups and factorization of groups and factorization odmains, the fundamental axioms in mathematics and crapability of developing ideas based on them, • An idea of fraig ideal, PID, ED, FD, UFD and polynomial ring.PC: Semester IMath-102C:After completion of this courses a tode of ming ideal, PID, ED, FD, UFD and polynomial ring.		Objective of Programme /	Employability of	Attainment of
ProgrammeThe outcome of the Programme offered by the Department of Mathematics, Ramanada College, Bishnupur, areThis programm uil enable the students to take part and qualify for the stute and national level examinations such as SET, NET, GATE, NBHM etc. After comprehensive way, so that it is understandable to all the students.This programme uses a common summary offer programming practicals, to focus on mathematics to focus on mathematics is understandable to all the students.This programme uses a data student students can go to focus on mathematica its applications to build and improve work in finance, sciences, maufacturing, business, engineering and in fields such as climate students to develop the depth of their knowledge in mathematics and also students get a feel for how to use their new skilled in the real life.This programme uses a communications. the field such as climate such as climate such as a prostantion, atoinal security. medicine, animated films, robotics and many other occupations.This programme uses a comming practicals, completion of this courses a research interest in the scope of bestowed rights and privileges.This programme uses a communications communicationsMath-101C: Abstract AlgebraAfter completion of this courses a tudent will learn equability of developing ideas based on them, of alcos right, ideal, PID, ED, FD, UED and polynomial ring.This programme uses a communicationsMath-102C:After completion of this courses a tudent will earn or subs of them, ideal of		•		Programme / Course
ProgrammeProgramme offered by the Department of Mathematics, Ramanada College Bishnupur, arethe students to take part and qualify for the state and national level examinations such as SET. NET. GATE, NBHM etc. After comprehensive way, so that it sudents.combination of usual classes, Library classes, project work to achieve the required oucome. More mathematics and its applications to build and improve work in finance, sciences, mathematics, project work in finance, sciences, mathematics, and its applications to build and improve work in finance, sciences, mathematics, and is applications to build and improve work in finance, sciences, mathematics, sciences, and alow well as applied matrications. Mathematicscombination of usual classes, Library classes, Library classes, Library classes, Students to develop the depti of their knowledge in mathematics and also students a teel for how to use their new skilled in the real life. • Create awareness to become an enlightened citizen with commitment to deliver one's responsibilities within the scope of bestowed rights and privileges.Her sector the scope of bestowed rights and manufacturing. • A vast knowledge of group theory and fing theory with they can use for their further study. • An idea of characterization of groups and factorization domanis, the fundamental axioms in mathematics axioms in mat				Outcome
After completion of this courses a student will learn• A vast knowledge of group theory and ring theory which they can use for their further study.• An idea of characterization of groups and factorization domains, the fundamental axioms in mathematics and capability of developing ideas based on them,• An idea of ring, ideal, PID, ED, FD, UFD and polynomial ring.Math-102C:After completion of this courses	Master of Science in	 Programme offered by the Department of Mathematics, Ramananda College, Bishnupur, are To deal with the syllabus in a very scientific, lucid and comprehensive way, so that it is understandable to all the students. To develop more skilled or specialized in a particular discipline. M.Sc degrees tend to be more focused and allow students to develop the depth of their knowledge in mathematics and also students get a feel for how to use their new skilled in the real life. Create awareness to become an enlightened citizen with commitment to deliver one's responsibilities within the scope of bestowed rights 	the students to take part and qualify for the state and national level examinations such as SET, NET, GATE, NBHM etc. After completing M.Sc, some mathematics students can go to focus on mathematical research and education, teaching whereas others can use mathematics and its applications to build and improve work in finance, sciences, manufacturing, business, engineering and communications. Mathematicians can work in fields such as climate study, astronomy and space exploration, national security, medicine, animated films, robotics and many other	This programme uses a combination of usual classroom teaching, Numerical C- programming practicals, ICT classes, Library classes, project work to achieve the required outcome. More importance is to be found on generating in students a research interest in various topics of pure as well as applied
Math-101C:A vast knowledge of group theory and ring theory which they can use for their further study.Math-101C:• An idea of characterization of groups and factorization domains, the fundamental axioms in mathematics and capability of developing ideas based on them,• An idea of ring, ideal, PID, ED, FD, UFD and polynomial ring.Math-102C:After completion of this courses	Courses		PG: Semester I	
	Abstract Algebra	 a student will learn A vast knowledge of group theory and ring theory which they can use for their further study. An idea of characterization of groups and factorization domains, the fundamental axioms in mathematics and capability of developing ideas based on them, An idea of ring, ideal, PID, ED, FD, UFD and polynomial ring. 		
	Math-102C: Linear Algebra &			

Module	• A clear knowledge of linear	
Theory	algebra regarding eigen values	
Theory	of various types of linear	
	operators.	
	• A basic idea on possible	
	canonical forms (Jordon	
	Canonical Form, Rational	
	Canonical Form,) along with	
	linear functional,	
	• A clear concept on inner	
	products spaces and bilinear	
	forms and its matrix	
	representation.	
	• A clear idea of Ring, ideal,	
	module theory and its	
	properties. Grow to knowledge	
	of the chain condition, and	
	primary Decomposition.	
	The students will be	
	introduced	
	• Measurable sets,	
	measurable functions and	
	their various properties,	
	• Concept of Lebesgue	
	integration as a	
Math-103C:	generalization of Riemann	
Real Analysis	integration, applications to	
	volume calculations and	
	Fourier analysis.	
	• Inculcate critical thinking	
	to carry out scientific	
	investigation objectively	
	without being biased with preconceived notions.	
	After completion of ODE &	
	PDE course, the students will	
	learn	
	• A clear knowledge of linear	
	and nonlinear ODEs,	
Math-104C:	existence & uniqueness of	
Ordinary	solution with the help of	
differential	Picard's and Piano's	
equations	theorems,	
and Partial	• Solution techniques for	
differential	both initial and boundary	
equations	value problems for ODEs,	
	• Stability of solutions	
	along with the solution	
	technique of Strum-	
	Liouville problem, Green's	
	functions.	

[• PDEs of first and second		
	• PDEs of first and second order, their classification,		
	methods of solution of linear		
	and nonlinear PDEs,		
	• Cauchy problem, method		
	of characteristic,		
	fundamental solution.		
	After completion of computer		
	programming C-Language a		
	student will be able to:		
	• Derive numerical		
	methods for approximating		
	the solution of different		
	problems of mathematics,		
	• Analyze the error		
Math-105C(IA):	incumbent in any such		
Internal Assignment	numerical approximation,Implement a variety of		
(Numerical Analysis and NA Practical	numerical algorithms using		
using C-Prog.)	appropriate technology		
	• Write any source program		
	to compute the numerical		
	solutions of the mathematics		
	problems, which arise in the		
	research studies with		
	applications to engineering,		
	physical, biological or social		
	sciences.		
	Acquiring communicative	Apart from the	
106CF:	skills and developing	employability outcomes	
Communicative	leadership qualities	listed earlier, this prepares	
Skill and		students best to perform	
personality		jobs that involve regular	
development		communication, both	
		written and oral.	
	PG: Sem	nester II	1
	After completion of this		
	courses a student will be		
	achieved		
	• A vast knowledge of		
	various types of Complex		
Math 201C:	integration, index of a curve,		
Complex Analysis	Winding number,		
	• A clear idea of various		
	types of singularities, their		
	inter-connection and their use		
	in Complex Analysis,		
	• to construct Möbius	1	

transformations, mapping circles to given circles, develop functions into power series and classify singularities. After completion of this courses a student will be able to know • Topological spaces and its example. • Concept of base of a topology and making to developed open set and neighbourhood at a point. • A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms. • A concept of different
develop functions into power series and classify singularities.After completion of this courses a student will be able to knowTopological spaces and its example.Ocncept of base of a topology and making to developed open set and neighbourhood at a point.A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
seriesandclassifysingularities.After completion of this courses a student will be able to know•Topological spaces and its example.•Concept of base of a topology and making to developed open set and neighbourhood at a point.•A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
singularities. After completion of this courses a student will be able to know Topological spaces and its example. Concept of base of a topology and making to developed open set and neighbourhood at a point. A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
After completion of this courses a student will be able to know • Topological spaces and its example. • Concept of base of a topology and making to developed open set and neighbourhood at a point. • A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
a student will be able to know• Topological spaces and its example.• Concept of base of a topology and making to developed open set and neighbourhood at a point.• A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
 Topological spaces and its example. Concept of base of a topology and making to developed open set and neighbourhood at a point. A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
its example.• Concept of base of a topology and making to developed open set and neighbourhood at a point.• A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
 Concept of base of a topology and making to developed open set and neighbourhood at a point. A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
Math 202C:topologyand making to developed open set and neighbourhood at a point.TopologyA concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
Math 202C:developed open set and neighbourhood at a point.Topology• A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
Topologyneighbourhood at a point.• A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
• A concept of limit point, interior point of a topology, connectedness, compactness, separation axioms.
interior point of a topology, connectedness, compactness, separation axioms.
interior point of a topology, connectedness, compactness, separation axioms.
connectedness, compactness, separation axioms.
separation axioms.
\bullet is concarry of utilizion (
types topological spaces.
After completion of this
courses a student will be
avinad
Maul 205C.
Calculus of several variables• a clear conceptofanalyticalpropertiesof
& Differential functions of several variables
Geometry of which they can use in future
curves and surfaces in research area.
 An idea of applications of
geometry in advanced level.
After completion of this courses a student will be able
to understand:
• A concept of Generalized
functions, their basic
Math 204C: properties,
Techniques of • Special functions, ordinary
Appliedpoint and singular point,MathematicsHermite
(Compare Provide and Polynomial,
(Generalized Functions,Legendre polynomial, Rodrigue's formula,
Special functions, • Legendre functions, Bessel
Integral functions, solution of
Equations) Legendre, Laugurre and
Bessel equation,
Classification of integral
equations, existence and
uniqueness of Volterra,

	Fredholm & Abel's integral		
	equations.		
Math 205C(IA): Internal Assignment (Integral Transforms & Computational methods for PDEs)	 Students will gain a range of techniques employing the Laplace and Fourier Transforms in the solution of ordinary and partial differential equations. Students will learn discretization techniques for the solution of ordinary differential equations and partial differential equations; stability, consistency and convergence criteria of different discretization methods; practical application of the methods to some well-known PDEs arising from mathematical modelling of real-life 		
	modelling of real-life problems.		
	Developing life skills and		
206EF: Human Rights and Value Education OR Yoga and Life Skills	soft skills, inculcating values and ethics in students to generate in fellow-feeling and social awareness.		
	PG: Seme	ester III	
	After completion of this		
Math 301C: Functional Analysis	 courses a student will be able to understand: An idea of example of Normed linear space, Banach space, Hilbert spaces and their applications. A concept of different type spaces (realistic and abstract) and grow to developed the concept of weak, strong convergence and operators and their properties. 		
Math 302C: Classical Mechanics	Generating in students a research interest in virtual work, D'Alembert's principal, work energy relations, Lagrangian formulation of Dynamics, Poission bracket,		

	1		
	theory of small oscillations		
	and special theory of		
	relativity. Continue to acquire		
	relevant knowledge and skills		
	appropriate to professional		
	activities and demonstrate		
	highest standards of ethical		
	issues in mathematical		
	sciences.		
	After completion of this		
	courses a student will be		
	learned:		
	• Lagrangian and Eulerian		
	Coordinate systems and their		
	relation.		
	• Conservations laws, strain		
Math 303C:	and stress tensors.		
Continuum			
Mechanics	• Constitutive equations for		
	linear elastic materials.		
	• Equations representing		
	conservation principles.		
	Fluid equations and flow		
	phenomena. Navier-Stokes		
	equation for compressible and		
	incompressible flow.		
	After completion of this		
	courses a student will know		
	• A clear idea of Ring, ideal,		
Math 304ME:			
Advanced Algebra -	module theory and its		
I	properties.		
	• Grow to knowledge the		
	chain condition and primary		
	Decomposition.		
	After completion of this		
	course a student would have		
	• a clear idea about linear		
	and non-linear dynamical		
Math 305ME:	systems and how to linearize		
Dynamical Systems	a nonlinear system,		
	•		
	• a knowledge regarding		
	bifurcations, linear and non-		
	linear difference equations		
Math 306ME(ID):	After completion of this	This course will	
	course, the students learn about	specifically enable to	
Computer	C-language and Matlab, which	students to take up jobs	
Applications	arise in the research studies to	involving Computer	
L	1	- 1	

	engineering, physical,	application and computer	
	biological or social sciences.	based teaching at various	
		levels.	
	PG: Sem	ester IV	
	Students will learn about		
	Operations Research (OR), its		
	definition, applications in		
	different sectors, formulation		
Math 401C	and solution of LPP, primal		
Operations	and dual simplex methods. Generating in students a		
Research	research interest in		
i i i i i i i i i i i i i i i i i i i	assignment problems, integer		
	programming, project		
	scheduling by PERT & CPM		
	techniques, deterministic		
	inventory problems.		
	The students will be able to		
	apply principles and concept		
	of graph theory in practical		
	situations, concept of		
	Mathematical logic, Trees,		
	Bipartite graph and Matching,		
	Chromatic number, Chromatic		
	polynomials with figure,		
	Colouring problems,		
	connectivity, network &		
Math 402 C	flows. They will also learn		
Graph Theory &	field extension along with		
Field Theory	Galois fields with their		
	application to formulate a		
	process of solving polynomial		
	of any degree.		
	After completion of this		
	course a student would have		
Math 403 ME	• a clear idea how to use		
	mathematical modelling in		
Modelling and Analysis of	different types of biological		
Biological	systems,		
systems	• a knowledge of analyzing		
	different types of		
	mathematical models of		
	biological systems. The students will learn		
Math 404 ME	about the concept of how a		
Computational	fluid flow, conservation		
Fluid	laws, entropy conditions,		
Dynamics	discretization methods for		
·	obtaining weak solutions,		

Math 405T(IA): Internal Assignment (Mathematics and its Applications)	 consistent and stable numerical schemes for computational solutions. Prepare students for pursuing research or careers in industry in mathematical sciences and allied fields. After completion of this course, the students learn about: Basic components of academic research such a literature survey, self study to identify a problem, solve it and produce report on his/her work etc. Prepare a scientific presentation and deliver it to a group of audience consisting of faculty members. Prepare and successfully taking part in a viva voce. 	This program will eaching	
Programme Bachelor of Science in Mathematics (Honours)	The outcome of the Programme offered by the Department of Mathematics, Ramananda College, Bishnupur, are • To deal with the syllabus in a very scientific, lucid and comprehensive way, so that it is understandable to all the students. • To develop more skilled or specialized in a particular discipline. • Equip the student with skills to analyze problems, formulate an hypothesis, evaluate and validate results, and draw reasonable conclusions thereof.	This program will enable the students to take part and qualify for School Service Commission Exam, PSC, UPSC, JAM, numerical ground of physics, chemistry. After completing B.Sc, some mathematics students can go to focus on mathematical research or higher study in Mathematics like M.Sc, whereas others can use mathematics and its applications to build and improve work in finance, sciences, manufacturing, business, engineering and communications.	This programme uses a combination of usual classroom teaching, Numerical C- programming practicals, ICT classes, Library classes, project work to achieve the required outcome.
Courses		UG: Semester I	
SH/MTH/101/C-1: Calculus, Geometry & Differential Equation	COI: After completion the differential equations the students should have:		

	TT 1 / 1/1 1/1 1/	
	• Understand the relationship	
	between the derivative and	
	the definite integral as	
	expressed in both parts of the	
	Fundamental Theorem of	
	Calculus.	
	• locate the x and y	
	intercepts, any undefined	
	points, and any asymptotes	
	• Understand the successive	
	derivatives and Leibnitz rule,	
	• An idea of 3D concept.	
	They will know equation of	
	1 , 2 ,	
	different types of central,	
	non-central conicoids,	
	generating line of conicoids,	
	• Understanding of the	
	standard quadratic surfaces	
	like cone, ellipsoid.	
	• A clear concept about the	
	differential equations (DE)	
	and its application, different	
	types of first order DE, like	
	as homogeneous, non-	
	homogeneous, linear and	
	non-linear and their	
	solutions.	
	• This concepts will also be	
	required in the next 2 nd	
	semester.	
	CO2:. After completion of	
	this courses a student will be	
	familiar with	
	• The relationship between	
	abstract algebraic structures	
	with familiar numbers	
SH/MTH/102/C-2:	systems such as the integers	
Algebra	and real numbers,	
geora	• Realizing the concept of	
	function & Relation and	
	also their application.	
	• A knowledge and	
	understanding of topics	
	including, but not limited to	
	menualing, our not minited to	

	divisibility, prime numbers,		
	congruence and quadratic		
	reciprocity.		
	Classical Algebra which		
	provides a complete and		
	contemporary perspective		
	on classical polynomial		
	algebra through the		
	exploration of how it was		
	developed and how it exists		
	today.		
	• A systems of linear		
	equations and their		
	applications,		
	• A knowledge of linear		
	transformation, subspace, rank,		
	Eigen value and eigen vector,		
	CayleyHamilton theorem and		
	its use in finding the inverse of		
	a matrix.		
	UG: Sen	nester II	1
	CO3: After completion of this		
	courses students will learn		
	• Density and Archimedean		
	property of real numbers.		
	• Contume about onen esta		
	• Capture about open sets and closed set		
	and closed set		
	• Determine if an infinite		
	sequence is bounded,		
	monotonic, convergent or		
	divergent,		
SH/MTH/201/C-3:			
Real Anlysis	• Determine if an infinite		
	series is convergent or		
	divergent by selecting the		
	appropriate test from the		
	following: (a) test for		
	divergence; (b) integral test;		
	(c) p-series test; (d)		
	the comparison tests; (e)		
	alternating series test; (f)		
	absolute convergence test;		
	(g) ratio test; and (h) root		
	test.		
SH/MTH/202/C-4:	CO4: After completion the		

Differential Equations	differential equations and		
and Vector Calculus	Vector Calculus the students		
	should have:		
	• A clear knowledge about		
	Lipschitz's condition and		
	existence solution of 1^{st}		
	order DE, i.e., Picard's		
	theorem.		
	• A clear concept about the		
	2 nd and higher order		
	differential equations (DE)		
	and its application		
	• A basic idea of system of		
	differentia equations and it		
	applications.		
	• A clear knowledge about		
	series solution of the		
	differential equations.		
	• An idea of vector triple		
	products with their		
	geometrical meaning,		
	• A clear concept of limits,		
	continuity, differentiability		
	and integrability of vector		
	valued functions and their		
	applications.		
	UG: Sem	ester III	
	CO5: After completion this		
	course the students should		
	have:		
	• Determine if subsets of a		
	metric space are open,		
	closed, connected, bounded,		
	totally bounded and/or		
SH/MTH/301/C-5:	compact.		
Theory of Real Functions &	• Determine if a function on		
Introduction to Metric	a metric space is		
Space	discontinuous, continuous,		
	or uniformly continuous.		
	• Realization of the concept		
	of limit, continuity,		
	differentiability with some		
	geometrical interpretation of		
	real functions. Application		
	of limit at finite & infinite		

	naint		
	point.		
	• Ideas of various real		
	function when it is		
	continuous or discontinuous		
	at any point.		
	CO6: The students will be		
	able to know Group theory, in		
	modern algebra, the study of		
	groups, which are systems		
	consisting of a set of elements		
	and a binary operation that		
SH/MTH/302/C-6:	can be applied to two		
Group Theory-I	elements of the set, which		
	together satisfy certain		
	axioms. They will also realize		
	subgroup, idea of centralizer,		
	normalizer, center of a group,		
	concept of cyclic group and		
	Lagrange's theorem.		
	CO7: Students will gain		
	knowledge of errors occurs in		
	numerical calculation,		
	develop the idea and		
	application of finite		
	differences, understand the		
	concept of interpolation, learn		
SH/MTH/303/C-7:	some numerical techniques of		
Numerical Methods Numerical Methods	solving differential &		
Lab	integration equations based on		
	interpolation. Grow to find the		
	roots of transcendental and		
	polynomial equation . They		
	will able to developed their		
	concept of iteration method		
	and geometric representation		
	of iteration method.		
	CO8: After completion of		
	computer programming C-		
	Language a student will be		
	able to:		
SH/MTH/305/SEC-1:	Write any source program to		
Pogramming using C	compute the numerical		
(New)	solutions of the mathematics		
	problems, which arise in the		
	research studies with		
	applications to physical,		
		l	

	biological or social sciences.		
	-	ester IV	
SH/MTH/401/C-8: Riemann Integration and Series of Functions	 UG: Sem CO9: This course concerns three complementary theories of integration due to Riemann, The student learning outcomes for the course are: Definitions of fundamental concepts in each integration theory, Fundamental theorems on the existence and properties of each of these integrals Calculate concrete integrals Calculate concrete integrals, rigorously justifying each step using the theory, Apply integration theory to prove results about specific classes of functions Construct examples that illustrate aspects of the theory Reproduce proofs of major results in the theory Construct proofs of known results that expand upon the theory discussed in lectures Explain the advantages and limitations of each of the theories of integration Series of function with examples and also realize power series and Fourier 	eester IV	
SH/MTH/402/C-9: Multivariate Calculus	 series. CO10: After completion of Multivariate Calculus student will be gained to: A basic idea of vector field, divergence, curl, irrotational and solenoidal vector. A clear knowledge about line integral and its application. A clear concept about the Green's theorem, Stoke's and divergence theorem. 		

		I	
	• The concept of continuous		
	and differentiable function		
	of two and more variables.		
	• Grow to knowledge of		
	directional derivatives,		
	tangential plane and its		
	applications.		
	CO11: After completion this		
	course the students should		
	have:		
	• An idea of Ring, sub-Ring,		
	Field, Integral domain,		
	Ideal, type of ideal and		
	their properties,		
SH/MTH/403/C-10:	• Knowledge of isomorphism		
Ring Theory and	theorem I,II and III.		
Linear Algebra-I	• A clear concept of vector		
	space, linear span, basis		
	and dimension of		
	subspaces,		
	• Knowledge of rank, nullity,		
	matrix representation of a		
	linear transformation,		
	invertibility and isomorphism.		
	CO12: They will realize the		
	concept of graph theory in		
	practical situations, apply the		
SH/MTH/405/SEC-2:	basic concept of Mathematical		
Graph Theory (SEC	logic, realize the concept of		
T4)	Trees, Bipartite graph and		
	Matching Hamiltonian graph,		
	connectivity, network &		
	flows.		
	UG: Sen	noston V	
	· · - ·		
	CO13: After completion this		
	course the students should		
SH/MTH/501/C-11: Partial Differential Equations and Applications	have:		
	• A clear knowledge about		
	PDE and different types of		
	PDE like linear and non-		
	linear and solution method		
	• A clear concept about the		
	2 nd and higher order PDE		
	and classification 2 nd order		
	PDE and its canonical		
	form.		
	101111,		

	1	
	• A basic idea about heat	
	equation, wave equation	
	and Laplace equation and	
	their solutions.	
	• A basic concept about	
	Cauchy problem of an	
	infinite string. Initial	
	Boundary Value	
	Problems. Semi-Infinite	
	String with a fixed end,	
	Semi-Infinite String with a	
	Free end and Vibrating	
	string problem.	
	 A clear idea about central 	
	force, constraint motions,	
	varying mass, tangent ,	
	normal, planetary motions	
	and Kepler's 2 nd law.	
	CO14: They will have an idea	
	of Automorphism, inner	
	automorphism, automorphism	
	groups, external and internal	
	direct product, concept of the	
	Fundamental theorem of finite	
	abelian groups, deriving	
	Group actions, stabilizers and kernels, permutation	
	kernels, permutation representation associated with	
	a given group action.	
SH/MTH/502/C-12:	Generalized Cayley's	
Group Theory - II	theorem,. Index theorem, well	
	describeing of Groups acting	
	on themselves by conjugation,	
	class equation and	
	consequences, conjugacy in	
	Sn, p-groups, apply of	
	Sylow's theorems and	
	consequences, producing	
	Cauchy's theorem, Simplicity	
	of A_n for $n \ge 5$ and non-	
	simplicity tests.	
	CO15: They will be able to	
	learn about	
SH/MTH/503/DSE-1:	• Graphical method, simplex	
Linear Programming	method, two-phase method	
(DSE T1)	and Big-M method to solve an	
(DSE 11)	LPP.	
	• The conception of convex	
	sets, primal-dual relationships,	

	economic interpretation of the		
	dual, .		
	• Solving technique of		
	Transportation and		
	assignment problem		
	• A complete idea of Game		
	theory.		
	CO16: After completion this		
	course the students will able		
	to		
	• Solve problems by thinking		
	logically, making		
CU/MTU/50//DCE 2	conjectures, and		
SH/MTH/504/DSE-2:	5		
Probability and	constructing valid		
Statistics (DSE T4)	mathematical arguments.		
	• Apply mathematical		
	reasoning to both abstract		
	and applied problems and to		
	both scientific and non		
	scientific problems.		
	UG: Sem	ester VI	
	CO17: After completion this		
	course the students will be		
	gained:		
	-		
	1		
	sequences in metric spaces,		
	Cauchy sequences. Complete		
	Metric Spaces and Cantor's		
SH/MTH/601/C-13:	theorem.		
Metric Spaces and	• A knowledge of the		
Complex Analysis	differentiation and		
Complex Analysis	integration of functions on C,		
	with applications to problem		
	from real analysis,		
	• A clear concept of analytic		
	functions, Cauchy-Riemann		
	equation, harmonic functions,		
	power series with their		
	applications.		
	CO18: Students will get an		
	idea of Ideal, polynomial ring,		
	division algorithm, definition		
	of PID, ED, FD, UFD and		
	realize their properties,		
	concept of prime and		
SH/MTH/602/C-14:	irreducible element and		

Ring Theory and	understand their relation. The		
Linear Algebra II	students will learn about dual		
	spaces, annihilators. Eigen		
	spaces, diagonalizability,		
	invariant subspaces, minimal		
	polynomial for a linear operator.		
	They will gain knowledge of		
	inner product spaces, Gram-		
	Schmidt orthogonalisation		
	process, the adjoint of a linear		
	operator. least squares approximation, Orthogonal		
	projections and Spectral		
	theorem.		
	CO19: After completion this		
	course the students should		
	have:		
	• A clear knowledge about		
	different types of integers		
	numbers like prime		
	numbers, composite		
	numbers, relatively prime		
	numbers, Linear		
	Diophantine equation and		
	its solution, linear		
	congruence, Chinese		
	remainder theorem,		
	Fermat's and Wilson's		
SH/MTH/603/DSE-3:	theorems.		
Number Theory (DSE	• A clear concept about		
T7)	number theoretic function,		
	the Mobius Inversion		
	formula, the greatest integer function, Euler's		
	phi-function, Euler's theorem, reduced set of		
	residues. some properties of		
	Euler's phi-function.		
	• A clear concept of		
	encryption and decryption		
	and its application. Idea		
	of integer modulo,		
	congruent, Legendre		
	symbol and its properties.		
	CO20: After completion		
SH/MTH/604/DSE-4:	project work the students will		
Project Work	learn how to apply and adapt a		
	variety of problem-solving		
		1	

-		
	strategies to solve problems,	
	to improve thinking skills, to	
	promote effective	
	mathematical communication,	
	to develop mathematical	
	knowledge through problem	
	solving in a way that increases	
	students interest. The Math	
	project	
	• Describes a classroom	
	experiment.	
	• Analysed the students'	
	performance	
	• determinates better	
	students learning than	
	other classic methods	